内点罚函数法C语言实现 内点惩罚法c程序
分别用内点惩罚函数法和外点惩罚函数法求解下列约束优化问题(用matlab编程)
1、首先在电脑中启动matlab,新建一个函数文件,用来写目标函数。
2、在编辑器窗口中写入要求的目标函数,并保存,注意使函数名与文件名相同。
3、然后再新建一个函数文件,用来编写非线性约束条件。步骤及其注意事项同上。额外需要注意的是,需要将两个函数文件放在同一个文件夹中。
4、最后,在命令行窗口处写入fmincon命令。此处需要注意的是,对于没有的线性约束条件的位置药用空矩阵代替,并且初始条件需要满足非线性约束条件。
5、敲下键盘上的enter建,结果得出。可以发现exitflag=1是大于0的,所以结果正确。
内点惩罚函数法和外点惩罚函数法各有什么特点
内点惩罚函数法特点:求解时的探索点始终保持在可行域内。
外点惩罚函数法特点:对初始点没有要求,可以任意取定义域内任意一点。
惩罚函数可以分为外点法和内点法,其中外点法更通用,可解决约束为等式和不等式混合的情形,外点法对初始点也没有要求,可以任意取定义域内任意一点。而内点法初始点必须为可行区内一点,在约束比较复杂时,这个选择内点法的初始点是有难度的,并且内点法只能解决约束为不等式情形。
罚函数的应用
1、电机优化设计
在电机优化设计中应用广义罚函数法优化方法,既可以避免罚函数内点法因罚因子取得不当而造成的寻优困难,又保留了寻优逼近边界的优点,通过目标函数调整和罚函数的容差迭代,可以达到快速收敛的目的。同时,广义罚函数优化方法,还具有边界附近进一步搜索最优点的特性。在应用中,该方法是一种实用性很强而有效的内点寻优方法。
在机械领域,利用广义罚函数优化方法编制的计算机寻优模块与各类外点法或可行方案寻求方法结合,具有显著的优化效果。
2、广义指数因子预测
该模型实施的关键在于预报方程的变量选择和系数估计,在线性回归模型的拟合过程中引入罚函数能够压缩回归方程系数估计,将方程中一部分自变量的系数压缩为0,从而达到自变量选择、降低误差方差的目的,并保证预报方程的稳定性,从而提高预测精度。因此,应用罚函数方法来实现广义指数因子预报方程的拟合是合理的。
内点罚函数法的特点是 【 】
B。A错,内点法不能解决等式约束问题 C错 D迭代点不会在可行域外
什么是内点法
分类: 教育/科学 科学技术 工程技术科学
解析:
内部罚函数(内点法)
对于仅带不等式约束的非线性规划问题,也可考虑使用另一种“惩罚”方式。引进的罚函数的作用相当于在可行域的边界上设置障碍,是求解的迭代过程始终在可行域内部进行。由于这种罚函数使得迭代点保持在可行域内部,故称为内部罚函数或障碍函数。
记可行域内部为
S0={ x | g(x) 0 , j=1, 2, …, m}
且 S0≠Ø 我们可以仿照外部罚函数法的叠加办法来构造增广目标函数,使得该增广目标函数在可行域内部离边界较远处与原问题的目标函数f(x) 尽可能接近,而在靠近边界是函数之迅速增大
常取
B(x,r) = r ∑ 1/gj(x), (r0)
或
B(x,r) = r ∑ ln (gj(x)), (r0)
为障碍函数。在S 的边界上,B(x,r) 为正无穷大。
社选区一旦剪切区域0的“障碍”引子列{ rk} k=1, 2, …, ,由每一 rk 作一对应的障碍函数B(x,rk) ,在利用它构造出定义在 S0 内的增广目标函数列
F(x,rk) =f(x) + B(x,rk)
则若点 x(k) 从S0 内向S 的边界趋近时,F(x,rk) 的值将无限增大,由此关于该增广目标函数的无约束问题
min F(x,rk) (1)
得最优解必落在可行域内部,且难以接近可行域边界。若原余额书问题的最优解在 内部,则党 渠道某一适当值时,无约束问题1的最优解可以达到它。若原问题的最优解在 S 的边界上,则随障碍因子rk 逐渐减小,相应的问题的最优解点烈将向S边界上的问题的最优解逼近。这就是内部罚函数的求解过程。很显然该方法的初始点 x(0) 必须在可行域内部。
声明:本文内容由网友自发贡献,本站不承担相应法律责任。对本内容有异议或投诉,请联系2913721942#qq.com核实处理,我们将尽快回复您,谢谢合作!
若转载请注明出处: 内点罚函数法C语言实现 内点惩罚法c程序
本文地址: https://pptw.com/jishu/3607.html
